

土壤污染評估調查人員在職訓練教材

DNAPL污染場址的 01 調查技術現況說明

--技術現況

02 調查技術工具說明 --未來發展

01

DNAPL污染場址的 調查技術現況說明 --技術現況

國內地下水含氯污染場址

- 以評估人員需求為前提規劃
- ·以下的內容將含括NAPLs,其中又以DNAPLs (重質非水相液體)為重,因其與土壤污染較直 接相關

相關統計

- 資料來源:
 - 113年6月30日SGM場址管理資料
- 場址管理查詢:
 - 地下水含氯(四氯化碳、氯苯、氯仿、氯甲烷、1,4-二氯苯、1,1-二氯乙烷、1,2-二氯乙烷、1,1-二氯乙烯、順-1,2-二氯乙烯、反-1,2-二氯乙烯、2,4,5-三氯酚、2,4,6-三氯酚、五氯酚、四氯乙烯、三氯乙烯、氯乙烯、二氯甲烷、1,1,2-三氯乙烷、1,1,1-三氯乙烷、1,2-二氯苯、3,3′-二氯聯苯胺)場址
 - 共計206筆

• 各縣市含氯地下水污染場址類型

12 → □		ţ	易址類型			4囱 ≐土
縣市別	工廠	加油站	其他	軍事場址	儲槽	總計
臺北市	1					1
新北市	6		2			8
桃園市	41	1	4			46
臺中市	15		9		4	28
臺南市	9	2	10			21
高雄市	20	1	4	2	1	28
新竹縣	5		1			6
新竹市		2	9			11
苗栗縣	8		13			21
彰化縣	17				2	19
雲林縣	1		2			3
嘉義縣	4		2		2	8
屏東縣			1	1		2
南投縣	1					1
基隆市	1					1
澎湖縣			1	1		2
總計	129	6	58	4	9	206

• 各種含氯地下水污染場址類型之目前列管狀態

項目	目前列管狀態		場址	類型			總計
	日別列目水怨	工廠	加油站	其他	軍事場址	儲槽	がですし
	公告地下水受污染使用限 制地區及限制事項	8		16			24
正列管	公告為控制場址	31		11	1	1	44
中	公告為整治場址	39	1	5	1		46
	依七條五採取應變必要措 施	1					1
	解除依七條五採取應變必 要措施	3	2	2	1	4	12
已解除	公告解除控制場址	28	1	4	1	2	36
列管、 廢止、 撤銷	公告解除劃定地下水受污染使用限制地區及限制事 項			6			6
	公告解除整治場址	7	2	1			10
	公告撤銷	5		3			8
	公告廢止	7		10		2	19
總計		129	6	58	4	9	206
百分比((%)	62.6	2.9	28.2	1.9	4.4	100

• 115處正列管中場址已列管年數狀態

	已列管年數					
場址列管狀態	<1	<5	<10	>10	總計	
	(小於1年)	(1-5年)	(5-10)	(大於10年)		
公告地下水受污染 使用限制地區及限 制事項		9	9	6	24	
公告為控制場址	1	4	14	25	44	
公告為整治場址		2	18	26	46	
依七條五採取應變 必要措施			1		1	
總計	1	15	42	57	115	
百分比 (%)	0.9	13	36.5	49.6	100	

30處已解列、撤銷、廢止場址列管年數統計(107年)

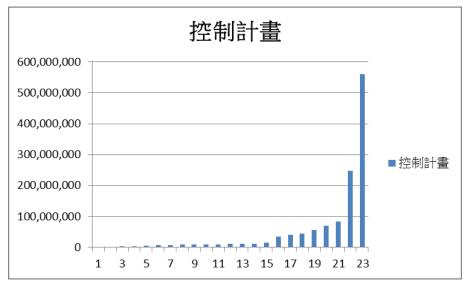
		至解院	余年數		
場址列管狀態	<1	<5 (1-5年)	<10 (5-10年)	>10	總計
公告解除控制場址	1	3	4	2	10
公告解除劃定地下水受污染 使用限制地區及限制事項	0	0	1	0	1
公告解除整治場址	0	1	1	0	2
公告撤銷	2	4	0	0	6
公告廢止	0	0	1	0	1
解除依七條五採取應變必要措施	0	7	3	0	10
總計	3	15	10	2	30
百分必 (%)	10	50	33.33	6.67	100

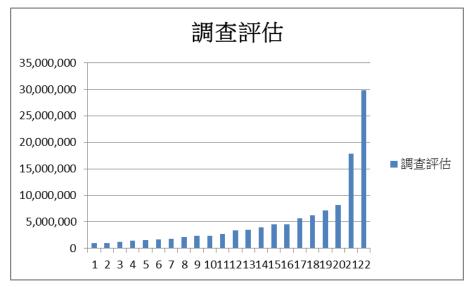
• 91處已解除列管、廢止、撤銷場址列管年數統計(113年)

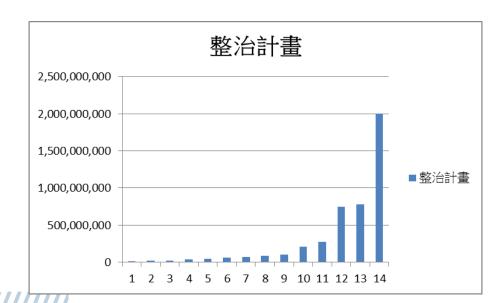
場址列管狀態	<1	<5	<10	>10	總計
	(小於1年)	(1-5年)	(5-10)	(大於10年)	
公告解除劃定地下					
水受污染使用限制			5	1	6
地區及限制事項					
公告解除控制場址	1	9	15	11	36
公告解除整治場址			7	3	10
解除依七條五採取		9	3		12
應變必要措施		9	0		12
公告撤銷	3	4	1		8
公告廢止		11	4	4	19
總計	4	33	35	19	91
百分比 (%)	4.4	36.2	38.5	20.9	100

計畫管理資料中地下水含氯場址相關經費

序號	控制計畫	調查評估	整治計畫	應變必要措施	監督計畫
1	1,500,000	980,000	14,650,000	4,800,000	6,000,000
2	1,700,000	1,036,900	19,820,000	6,226,500	8,696,300
3	3,600,000	1,256,000	23,500,000	10,500,000	14,999,999
4	4,430,000	1,405,865	40,100,000	197,100,000	20,800,000
5	5,270,000	1,600,000	50,100,000		31,420,000
6	6,500,000	1,670,000	59,800,000		
7	6,700,000	1,840,000	68,350,800		
8	8,500,000	2,100,000	84,000,000		
9	8,550,000	2,317,000	101,200,000		
10	9,400,000	2,383,500	208,000,000		
11	9,800,000	2,718,345	276,800,000		
12	11,336,600	3,452,264	746,500,000		
13	11,370,000	3,538,500	776,800,000		
14	12,000,000	3,987,500	2,000,000,000		
15	15,450,000	4,500,000			
16	34,750,000	4,560,800			
17	39,871,650	5,730,000			
18	43,750,000	6,230,000			
19	56,820,000	7,210,000			
20	69,280,000	8,220,000			
21	84,370,000	17,885,000			
22	247,850,000	29,840,000			
23	560,455,519				




計畫管理資料中地下水含氯場址相關經費統計分析


	控制計畫	調查評估	整治計畫	應變必要措施	監督計畫
平均數	54,489,294	5,202,803	319,258,629	54,656,625	16,383,260
標準誤	25,469,190	1,414,626	146,092,338	47,496,564	4,552,065
中間值	11,336,600	3,085,305	76,175,400	8,363,250	14,999,999
眾數	#N/A	#N/A	#N/A	#N/A	#N/A
標準差	122,145,942	6,635,183	546,627,475	94,993,127	10,178,728
變異數	1.49196E+16	4.40257E+13	2.98802E+17	9.02369E+15	1.03606E+14
峰度	14.52715604	9.480190343	7.270859316	3.986832809	-0.241927602
偏態	3.693711527	2.964852316	2.605134275	1.996118504	0.75453066
範圍	558955519	28860000	1985350000	192300000	25420000
最小值	1,500,000	980,000	14,650,000	4,800,000	6,000,000
最大值	560,455,519	29,840,000	2,000,000,000	197,100,000	31,420,000
總和	1,253,253,769	114,461,674	4,469,620,800	218,626,500	81,916,299
個數	23	22	14	4	5
信賴度					
(95.0%)	52,819,866	2,941,875	315,613,308	151,155,263	12,638,560

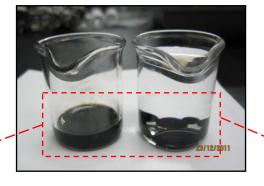
有極端值影響平均數時,中位數(中間值)較具代表群體之特性

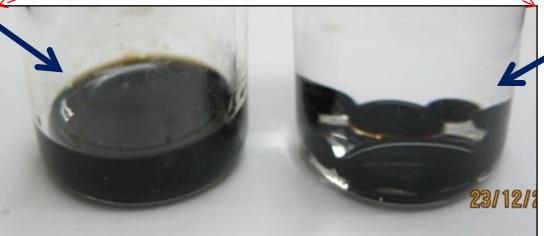
經費依序排列圖 明顯有極端值存在

地下水含氯污染場址的列管提示

- 含氯污染場址的列管時間、改善經費均較高,評估人員如何降低 改善經費?縮短列管時間?評估人員如何協助業主避免成為含氯 污染場址?
- 列管場址中有多少為污染源來自土壤中之殘留態?是否只有單純為地下水含氯污染樣態,而無土壤污染或殘留的場址?評估人員如何判斷地下水含氯污染的來源?來源不截斷阻絕,將持續污染地下水,整治改善事倍功半。
- 是否有場址因未處理土壤殘留態或土壤污染,在地下水含氯污染 改善解列後地下水又重複污染之場址(Reboound)?或改善時程 因而延宕很長(拖尾)的場址?

地下水含氯污染場址的列管提示


- 未來是否仍會有含氯污染場址之產生?對土污法八、九條而言, 並不會因為環境部未執行含氯場址的系統性調查,而停止調查評 估工作,亦即仍會有土壤含氯污染場址的產生。相對即有地下水 含氯污染場址之產生。
- 對評估人員而言,評估過程中在土壤中發現含氯有機污染物,雖 未超標但極有可能變成地下水含氯污染之來源,應及早處理避免 污染擴大變成地下水控制或整治場址。
- 前端之調查評估技術應用方式和調查評估數據之確保,方能確認場址之實際污染情況,讓業主能真確掌握場址之真實情況,作為未來決策依據。

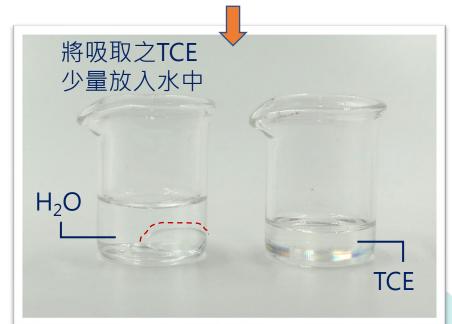


Non-Aqueous Phase Liquids (NAPLs)

● DNAPLs (重質非水相液體)

Chlorinated Solvent Waste 含氯溶劑廢液

Chlorinated Solvent Waste in Water 含氯溶劑廢液 存在於水中


(中興大學環工系 梁振儒教授拍攝)

少量DNAPLs洩漏,可污染大範圍的地下水污染

• 2 L (2.92 kg) of TCE可污染 (TCE Density: 1.46 g/mL)

29,200,000 L地下水達到污染濃度為100 ppb (µg/L)

(>20倍第一類地下水污染管制標準)(2,920,000 mg/(0.1 mg/L)=29,200,000 L)

或584,000,000 L地下水達到污染濃度5 ppb

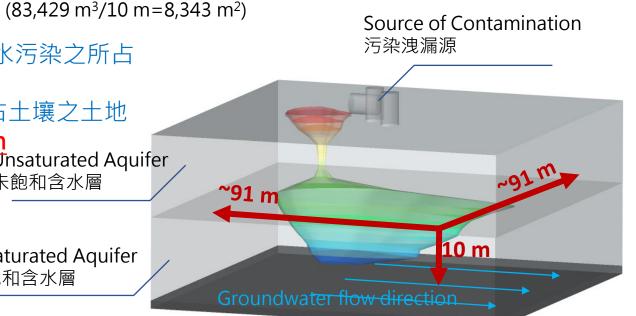
(體積示意)

假設情境

 $(29,200,000 L/0.35=8,342,857 L=83,429 m^3)$

土壤孔隙率: 0.35

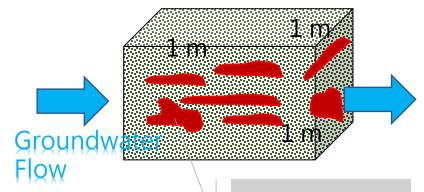
飽和含水層深度: 10 m


受100 ppb 29,200,000 L地下水污染之所占 土壤體積=83,429 m³

被83,429 m³地下水污染之所占土壤之土地

面積=8,343 m² ≈ 91 m * 91 m

Unsaturated Aquifer 未飽和含水層


Saturated Aquifer 飽和含水層

局部土壤DNAPLs存在,可成為長期之地下水污染源

▶ 1 m³土壤具有土壤孔隙(孔隙率35%)0.35 m³,當TCE洩漏於土壤中時,經由移動,當土壤孔隙中之20%有TCE殘留存在,因此,殘留之TCE體積為0.07 m³其重量為102 kg (1.46 g/mL×70,000 mL)。

- 1 m³土壤具有土壤孔隙(孔隙率35%)0.35 m³,當TCE洩漏於土壤中時,經由移動,當土壤孔隙之20%殘留有TCE之存在,因此,才留之TCE體積為0.07 m³(即102 kg=1.46 g/mL×70,000 mL)。
- ▶ 地下水流經此污染區域(1 m³土壤),帶出100 ppb污染地下水體,若地下水以100 cm/day之流速移動,此TCE溶解污染地下水情境,將會需要2,800年,才可使得此1 m³土壤中之TCE完全溶解移除。

$$Q = 100 \frac{\text{cm}}{\text{d}} \times 1 \text{ m}^{2} = 1 \frac{\text{m}^{3}}{\text{d}} \qquad \frac{102 \text{ kg} \times \frac{10^{6} \text{ mg}}{\text{kg}}}{0.1 \frac{\text{mg}}{L}} = 1.022 \times 10^{9} \text{ L} = 1.022 \times 10^{6} \text{ m}^{3}$$

$$\frac{1.022 \times 10^{6} \text{ m}^{3}}{1 \frac{\text{m}^{3}}{d}} = 1.022 \times 10^{6} \text{ d} = 2800 \text{ years}$$

20% 土壤孔隙 TCE 殘留

DNAPL調查

- · 為何DNAPL調查是一個挑戰?
- DNAPLs污染物釋出與不同工業活動相關,污染成份來源複雜。
 - 例如:不同工業(木材防腐、金屬清洗、除漆、地下儲槽等)使用不同氯化有機溶劑,廢(混合)溶劑棄置、 掩埋或儲存池。
- DNAPL以自由相沿著<u>地表下優勢途徑移動</u>,直至遇到障礙而停止移動或聚積成一儲池 (pool);或以被土壤吸持之殘留相存在。
- 由於DANPL複雜之傳輸及宿命,使得其於地表下不易確認及移除。僅須極少量之DNAPL即可成為長時間之污染源。

美國超級基金場址清理程序

PA/SI	初步評估及場址勘察 (Preliminary Assessment/Site Inspection) 首先調查場址情況。視有害物質的污染情形,倘若需要立即或在短期內採取應變行動,則依超級基金的緊急 應變措施辦理。
NPL Listing	國家優先整治場址列管過程 (National Priorities List (NPL) Site Listing Process) 列出污染情況最嚴重、可能需要進行長期清理的場址名單。
RI/FS	整治調查及可行性評估 (Remedial Investigation/Feasibility Study) 確定污染的狀況及範圍,評估場址整治的可行性,以及整治技術可能達成的成果及成本。
ROD	決策紀錄 (Records of Decision) 說明會採用何種場址清理方案。整治費用若超過2500萬美元,須由國家整治審查委員會 (National Remedy Review Board) 審核。
RD/RA	整治設計及整治行動 (Remedial Design/Remedial Action) 規劃並執行場址整治計畫和細部事項。清理工作通常多在此階段進行。所有由超級基金補助的整治計畫都會 經過國家優先整治推動小組 (National Priorities Panel) 的審核。
Construction Completion	完成整治設備/設施之建置作業 (Construction Completion) 確認實際清理工作是否完成,但即使完成,不表示已達成最後清理階段。
Post Construction Completion	整治系統運轉期間 (Post Construction Completion) 確保超級基金的應變行動能長期保護環境及人類健康,包括長期應變行動 (Long-Term Response Actions, LTRA)、操作及維護 (Operation and Maintenance)、行政管制 (Institutional Controls)、5年一次的複查 (Five-Year Reviews) 及整治最佳化 (Remedy Optimization) 等行動。
NPL Delete	自國家優先整治名單 (NPL) 移除 一旦完成所有應變行動,達成清理目標,即將場址自國家優先整治名單移除。
Reuse	場址再利用及再開發 (Site Reuse/Redevelopment)

說明超級基金計畫如何與社區及其他單位合作,順利進行整治,讓污染場址恢復安全且具有生產力的狀態。

美國國家優先整治場址 (NPL) 之記錄決策 (ROD) 中大約22%之場址疑似或確定遭受到DNAPL之污染。

疑似DNAPL污染場址的調查需要收集甚麼資訊?

- Data on Existing Conditions(場址現況 資料)
- Historical and Modeling Information (場址歷史與模式資料)

1. Data on Existing Conditions (場址現況資料)

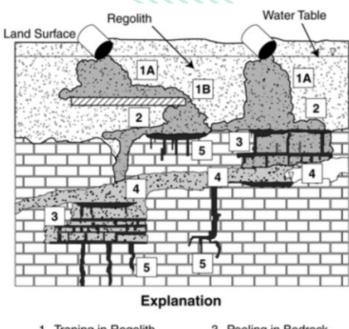
- 瞭解DNAPL之地質物理與地質化學行為。
- DNAPL為重質與水不互溶(親脂性)液體,其於地表下之移動受下列部分 特性所影響:
 - 介面張力、黏滯度、比重、土壤特性(包含土壤孔隙尺寸與分布、 含水率、相對滲透度及毛細力等)
- 地下水流對氯化有機溶劑類之DNAPL移動影響甚低,但對比重接近1之溶劑其移動性則具較大之影響。
- 土壤樣本分析不易得到DNAPL存在之證據。

1. Data on Existing Conditions (場址現況資料)

場址地質調查(地下鑿穿或地球物理技術)是場址污染調查、監測、整 治不可或缺的前置作業。

地球物理技術例如: 透地雷達 (Ground-Penetrating Radar Method)、電磁波探測 (Electromagnetic Method)、井內探測 (Well Logging) 及地電阻 (Electrical Resistivity) 探測等

2. Historical and Modeling Information (場址歷史與模式資料)


- 利用現有資料建立場址概念模型 (Conceptual Site Model, CSM)
 現有資料應至少包含:水文地質、地下水流向、K值、污染源、流布、傳輸、 污染物物化特性、反應機制、降解衍生物、污染團範圍深度、基本水質資料等。
 - 蒐集資料的工具方法:基本資料可參考評估人員網格法及場址評估法中有關污染
 - 潛勢的判斷方法如訪談、現勘等。工具應用則可參考本簡報介紹之工具。
- 場址概念模式:結合DNAPL之地質物理與化學行為及場址地質條件,以及場址過往歷史使用狀況,整合上述相關資料作為場址概念模型 (CSM) 的基本元素。

場址概念模型CSM

- 遭到DNAPL污染的可能訊息
 - ✓地下水濃度超過DNAPL污染物水中溶解度之1%。
 - ✓土壤濃度超過10,000 mg/kg(土壤重量之1%)。
 - ✓土壤氣體濃度超過100-1,000 ppmv。

(註:未出現上述之現象,不代表DNAPL不存在

- 3 Pooling in Bedrock Diffuse Flow Zone
- 2 Pooling at Top of Rock
- 4 Pooling in Conduit5 Pooling in Fractures Isolated from Flow
- Cavernous Carbonate Rock
- Regolith
- Fractured Carbonate Rock
- Low Permeability Regolith Layer

Figure 1-1. Distribution of Potential DNAPL Accumulation in a Hypothetical Karst Setting.

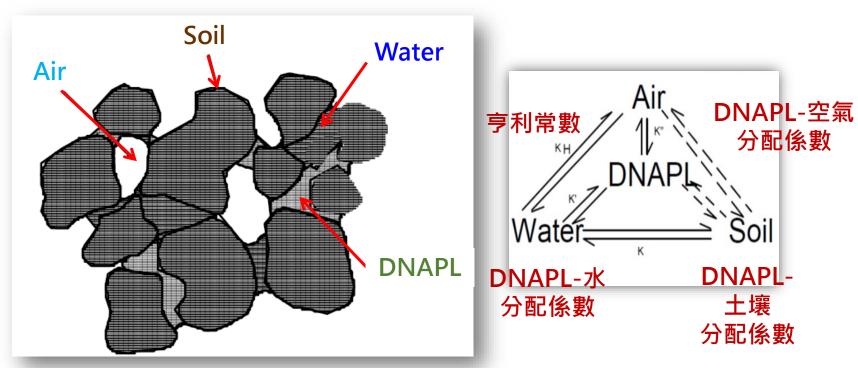
瞭解DNAPL

- 由於DNAPL特性及地表下地質狀態等複雜因素影響,在大多數的情況下,DNAPL多無法直接偵測到,因此對於DNAPL污染之整治, 其偵測常為一重要之限制因子。
- DNAPL化學物質可略分為:
 - 鹵化/非鹵化半揮發性物質 (Halogenated/Non-Halogenated Semi-Volatiles)
 - 鹵化揮發性物質 (Halogenated Volatiles)
- DNAPL來源:溶劑、木材防腐劑(雜酚油、五氯酚等)、煤焦油、 農藥

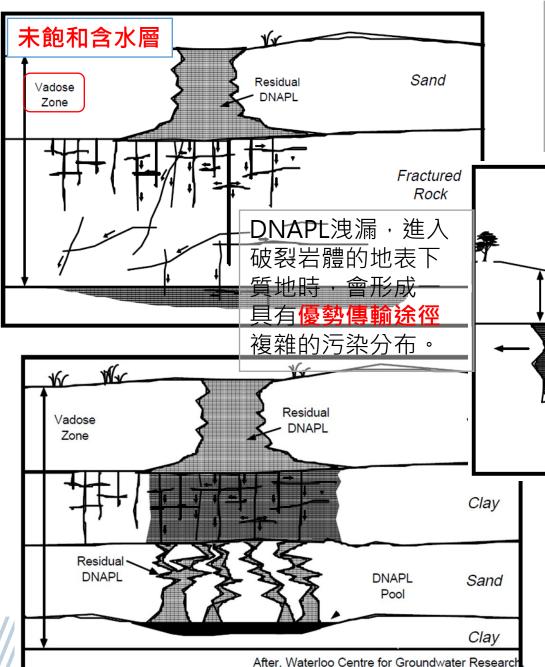
Table 1. Most prevalent chemical compounds at U.S. Superfund Sites (65) with a specific gravity greater than one.

Compound	Density [1]	Dynamic Viscosity [2]	Kinematic Viscosity [3]	Water Solubility	Henry Constant ^[5]	Vapor Pressure ^[6]
Halogenated Semi-volatile	es					
1,4-Dichlorobenzene 1,2-Dichlorobenzene Aroclor 1242 Aroclor 1260	1.2475 1.3060 1.3850 1.4400	1.2580 1.3020	0.997	8. 0 E+01 1. 0 E+02 4.5 E-01 2.7 E-03	1.58 E-03 1.88 E-03 3.4 E-04 3.4 E-04	6 E-01 9.6 E-01 4.06 E-04 4.05 E-05
Aroclor 1254 Chlordane Dieldrin 2,3,4,6-Tetrachlorophenol Pentachlorophenol	1.5380 1.6 1.7500 1.8390 1.9780	1.1040	0.69	1.2 E-02 5.6 E-02 1.86 E-01 1. 0 E+03 1.4 E+01	2.8 E-04 2.2 E-04 9.7 E-06 2.8 E-06	7.71 E-05 1 E-05 1.78 E-07
Halogenated Volatiles						
Chlorobenzene 1,2-Dichloropropane 1,1-Dichloroethane 1,1-Dichloroethylene 1,2-Dichloroethane Trans-1,2-Dichloroethylene Cis-1,2-Dichloroethylene 1,1,1-Trichloroethane Methylene Chloride 1,1,2-Trichloroethane Trichloroethylene Chloroform Carbon Tetrachloroethane	1.1060 1.1580 1.1750 1.2140 1.2530 1.2570 1.2480 1.3250 1.3250 1.4436 1.4620 1.4850 1.5947 1.6	0.7560 0.8400 0.3770 0.3300 0.8400 0.4040 0.4670 0.8580 0.4300 0.1190 0.5700 0.5630 0.9650 1.7700	0.72 0.321 0.27 0.67	4.9 E+02 2.7 E+03 5.5 E+03 4. 0 E+02 8.69 E+03 6.3 E+03 3.5 E+03 9.5 E+02 1.32 E+04 4.5 E+03 1. 0 E+03 8.22 E+03 8.0 E+02 2.9 E+03	3.46 E-03 3.6 E-03 5.45 E-04 1.49 E-03 1.1 E-03 5.32 E-03 7.5 E-03 4.08 E-03 2.57 E-03 1.17 E-03 8.92 E-03 3.75 E-03 2. 0 E-02 5. 0 E-04	8.8 E+00 3.95 E+01 1.82 E+02 5 E+02 6.37 E+01 2.65 E+02 2 E+02 1 E+02 3.5 E+02 1.88 E+01 5.87 E+01 1.6 E+02 9.13 E+01
1,1,2,2-Tetrachloroethane Tetrachloroethylene Ethylene Dibromide	1.6250 2.1720	0.8900 1.6760	0.54 0.79	1.5 E+02 3.4 E+03	5. 0 E-04 2.27 E-02 3.18 E-04	1.4 E+01 1.1 E+01

Compound	Density [1]	Dynamic Viscosity [2]	Kinematic Viscosity [3]	Water Solubility [4]	Henry Constant ^[5]	Vapor Pressure ^[6]
Non-halogenated Semi-	volatiles					
2-Methyl Napthalene	1.0058			2.54 E+01	5.06 E-02	6.80 E-02
o-Cresol	1.0273			3.1 E+04	4.7 E-05	2.45 E-01
p-Cresol	1.0347			2.4 E+04	3.5 E-04	1.08 E-01
2,4-Dimethylphenol	1.0360			6.2 E+03	2.5 E-06	9.8 E-02
m-Cresol	1.0380	21. 0	20	2.35 E+04	3.8 E-05	1.53 E-01
Phenol	1.0576		3.87	8.4 E+04	7.8 E-07	5.293E-01
Naphthalene	1.1620			3.1 E+01	1.27 E-03	2.336E-01
Benzo(a)Anthracene	1.1740			1.4 E-02	4.5 E-06	1.16 E-09
Flourene	1.2030			1.9 E+00	7.65 E-05	6.67 E-04
Acenaphthene	1.2250			3.88 E+00	1.2 E-03	2.31 E-02
Anthracene	1.2500			7.5 E-02	3.38 E-05	1.08 E-05
Dibenz(a,h)Anthracene	1.2520			2.5 E-03	7.33 E-08	1 E-10
Fluoranthene	1.2520			2.65 E-01	6.5 E-06	E-02 E-06
Pyrene	1.2710			1.48 E-01	1.2 E-05	6.67 E-06
Chrysene	1.2740			6.0 E-03	1.05 E-06	6.3 E-09
2,4-Dinitrophenol	1.6800			6. 0 E+03	6.45 E-10	1.49 E-05
Miscellaneous						
Coal Tar	1.028(7)	18.98(7)				
Creosote	1.05	1.08(8)				
[1] g/cc[2] centipoise (cp), wat 20°C.[3] centistokes (cs)	er has a dynan	nic viscosity of	f 1 cp at		[4] mg/l [5] atm-m ³ [6] mm Hg [7] 45° F ([8] 15.5°C.	


- 上表中四類型物質中,大多數污染物水中溶解度較低且比重皆比水大。
- 與水不互溶之特性,使其易以自由相型態存在。
- DNAPL移動性受比重影響,使其易向下移動,且受地層之影響而移動。
- 地下水流一般不影響DNAPL之移動性,然而若DNAPL之比重接近1之物質則較易受水流而移動。
- DNAPL之移動並非依靠地下水流動力而移動,因此其不易被偵測到確 切存在之位置,而造成整治上之困難。

DNAPL-傳輸與宿命


• 未飽和含水層 (Unsaturated zone)

DNAPL Phase Distribution-Four Phases System

Huling, S.G., Weaver, J.W. Dense Nonaqueous Phase Liquids, EPA Groundwater Issue, EPA/540/4-91-002

當足夠的DNAPL量進入地表下且超過未飽和層所能負荷的殘留飽和度後,藉由渗透或滲流而進入飽和含水層中。

Vadose

Zone

Plume of Dissolved

Contaminants

Residual Saturation of

DNAPL in Soil

From Spill

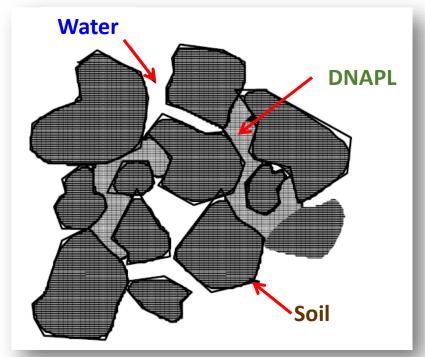
Residual
Saturation in Saturated Zone

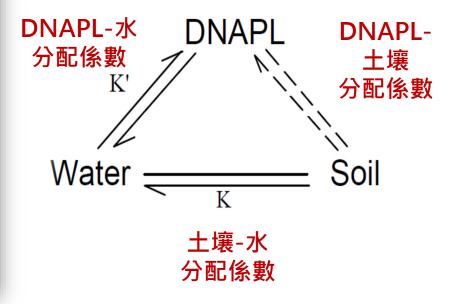
After, Waterloo Centre for Groundwater Research.

Infiltration and

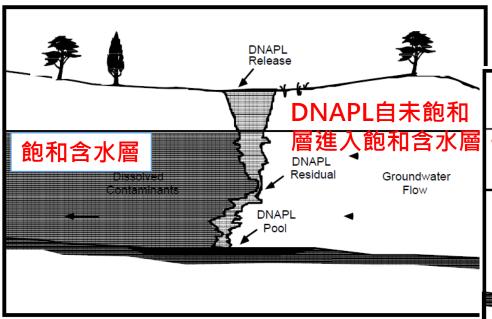
Leaching

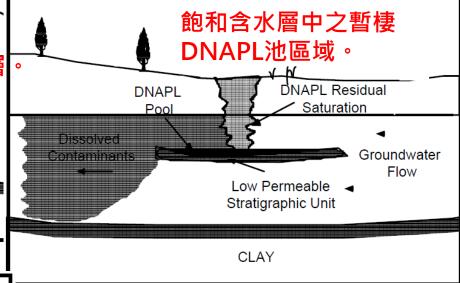
Groundwater

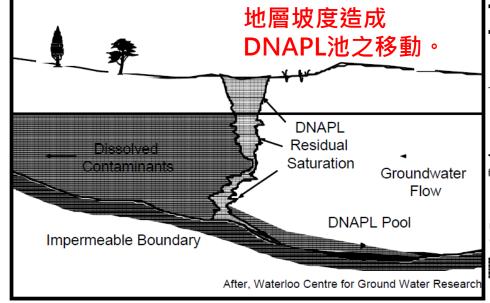

Flow

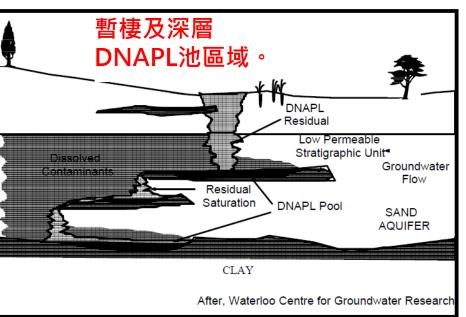


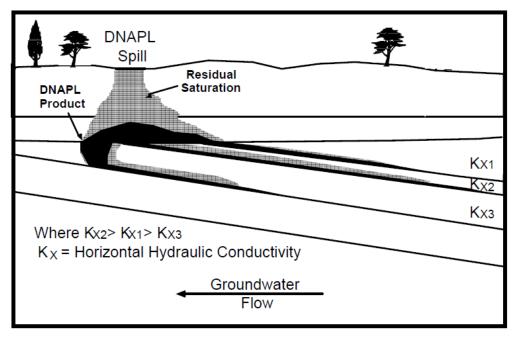
• 飽和含水層 (Saturated Zone)

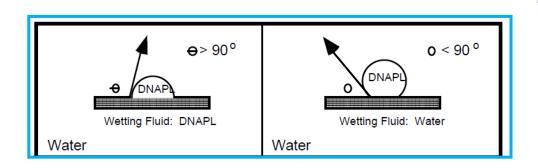

DNAPL Phase Distribution - Three Phases System




Huling, S.G., Weaver, J.W. Dense Nonaqueous Phase Liquids, EPA Groundwater Issue, EPA/540/4-91-002



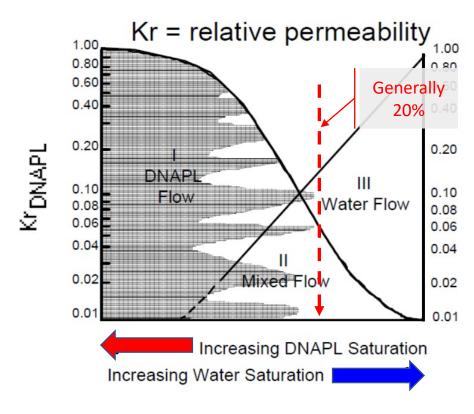



非水平地層及地表下<u>不同之水力</u> 傳導係數所造成之DNAPL移動, 並造成污染物分布與地下水流方 向不一致。

DNAPL傳輸及其宿命影響參數

DNAPL特性

- Density密度
- Viscosity黏滯度
- Solubility溶解度
- Vapor Pressure蒸氣壓
- Volatility揮發性
- Interfacial Tension介面張力
- Wettability溼性


地表下地層特性

- Capillary Force/Pressure毛細力
- Pore Size Distribution/Initial Moisture Content
 孔隙尺寸分布/含水率
- Stratigraphic Gradient地層梯度
- Groundwater Flow Velocity地下水流速

Huling, S.G., Weaver, J.W. Dense Nonaqueous Phase Liquids, EPA Groundwater Issue, EPA/540/4-91-002

飽和度影響因素

Huling, S.G., Weaver, J.W. Dense Nonaqueous Phase Liquids, EPA Groundwater Issue, EPA/540/4-91-002

污染場址調查三合技術 (Triad Approach)

由於污染場址調查整治工程花費

龐大,必須結合:

系統性規劃

(Systematic Project Planning)

動態工作策略 (Dynamic Work Strategies)

場址概念模型

Model (CSM)

Conceptual Site

現場即時量測技術

(Real-Time Measurement Technology)

□ 系統性規劃

- 1. 陳述問題
- 2. 確認計畫目標
- 3. 確認資料來源
- 4. 定義計畫邊界條件
- 5. 確認分析方法
- 6. 定義達成目標
- 7. 整合擬定細節計畫

"Guidance on Systematic Planning Using the Data Quality Objectives Process, EPA/240/B-06/001, 2006

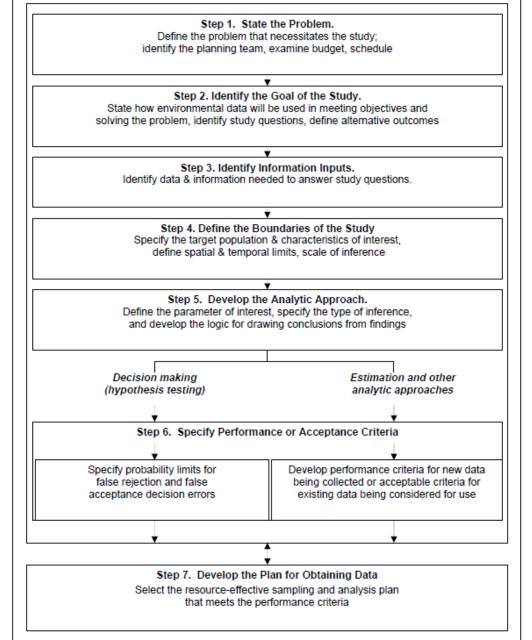
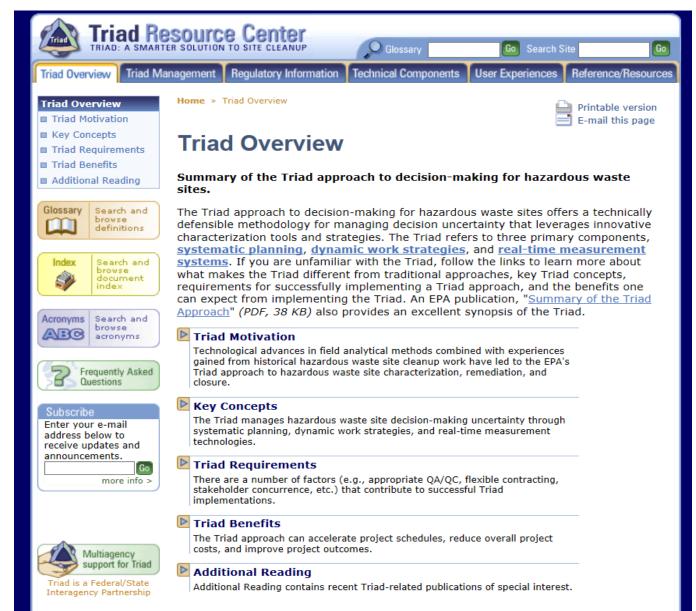
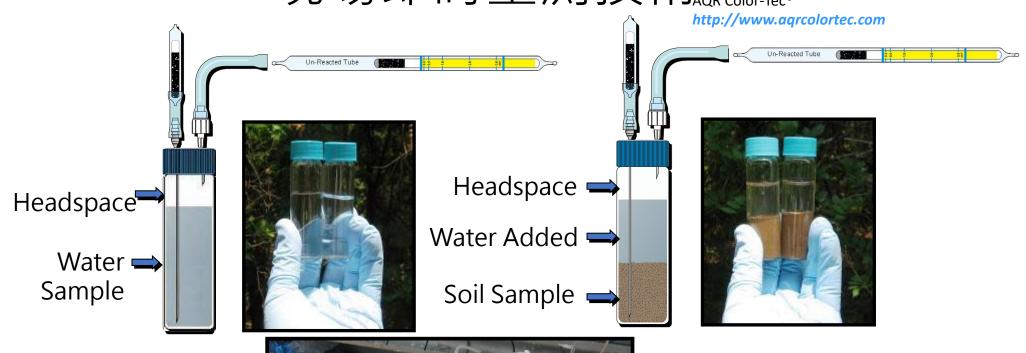



Figure 2. The Data Quality Objective Process



- □ 動態工作策略
- □ 現場即時量測技術

現場即時量測技術AQR Color-Tec®

Soil Set-Up

檢視現有場址資料

初步建立場址概念模型 (CSM)

進行非侵入式場址調查

修正CSM

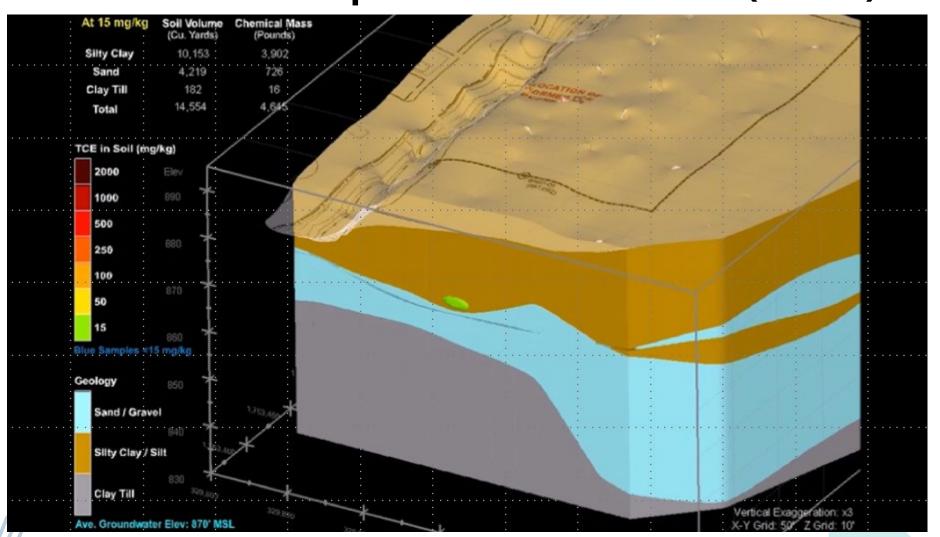
進行侵入式場址調查

修正CSM

收集與整治相關資料

目的 調查類型 品質調查 早期預防並掌握環境污染潛勢 認定場址是否遭到污染,公告 污染查證調查 場址的重要依據 污染範圍調查 確立污染範圍,劃定管制區 整治技術選擇之依據,技術可 整治調查 行性評估 瞭解污染變動狀況與評估技術 驗證調查 效益

黃智 "土壤與地下水污染調查規劃與策略"



	傳統調查技術 Conventional Site Characterization	高解析調查技術 High Resolution Site Characterization
水文地質	微水試驗 土壤採樣	水文地質剖面技術 瞭解垂直剖面水文地質
採樣規劃	幾處監測井採樣 調查尺度較大	直接貫入監測 執行 高密度土水採樣
樣品分析	樣品送至實驗室分析	進行現地即時樣本濃度分析 動態調查策略
污染分布	瞭解污染物於場址分布 概況	全面性瞭解污染物於場址 分布、 傳輸途徑
場址概念模型	建立場址概念模型 提供後續整治行動	建立或更新細部場址概念模型 提供後續整治行動

場址概念模型

3-D Conceptual Site Model (CSM)

建立修正CSM為核心重點——整治改善工法

- 評估人員以土壤調查評估為首重工作,且對象為兩批30個業別之高潛勢製程,惟土污法之管制對象並無此業別及介質之限制。另即便調查評估調查結果為正常,但並未排除其為行為人或污染場址之可能性。
- 亦即調查評估調查結果並非公告污染場址之保證書。
- NAPL相較重金屬較難調查,且其會向下傳輸,成為地下水污染之傳輸途徑。 其中又以DNAPL為重中之重,原因在於只要少量殘留於土壤中,經過雨水 或地下水的沖刷,即有可能成為地下水長期污染之污染來源。
- 所以如何應用適當工具及方法快速精準掌握其所在位置及範圍,對土地所有人而言極為重要。可以省下大量整治費用及時間。

如何精確掌握DNAPL所在位置及範圍?

- 在評估工具應用中,包含廠址歷史資料彙整,相關製程位置及操作、原物料的使用、廢棄物之堆置及清除處理(包含廢溶劑)方式、放流水的處理方法等,資深員工(管理者)的訪談為重要資訊來源,特別是地表廠房已拆除的場址。
- 另地下儲槽、地下陰井、地下管線等均為易發生洩漏處。
- 依此初步掌握污染潛勢,加上現勘的確認,作為採樣規劃之參考
- · 關鍵在於如何快速取得代表性的樣品?建立完整CSM?
- 場址之水文地質條件,會影響 DNAPL的傳輸路徑,進而對工具及 方法之選用會有不同隻考量。

未來發展方向

• 高解析調查技術

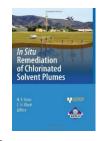
應用水文地質剖面技術,瞭解垂直向水文地質剖面,發展新穎快速成本低廉之調查技術,解決臺灣複雜之水文地質問題。水文地質係傳輸之骨架系統,攸關後續調查污染位置及污染範圍之準確性。

並影響採樣規劃之點位及數量,如何以高密度土水採樣篩選出代表性樣品,再送實驗室分析驗證,高密度土水採樣代表的是現場即時採樣分析之結果。作為調整動態調查策略的參考。

如何在一個採樣深度內取得土水污染深度的參考訊息?相對成本較低且精準。為現場採樣分析要解決之問題。

建立或更新細部場址概念模型

- 據此全面掌握污染物於場址之來源、傳輸途徑、分布及範圍,成 為後續污染改善計畫參考,除可減少後續調查計畫的經費之外, 亦減少污染團擴散之可能性。
- 調查評估人員執行8、9條業務,二批30個業別中,哪些項目和製程較有DNAPL污染的潛勢?必須能先行判斷較利於業務推動。



調查技術介紹

 調查技術標的此次鎖定在DNAPL技術的介紹,除此之外還有 重金屬、LNAPL等其他管制項目的調查技術,依標的不同而 選用不同技術,各有不同適用性。

偵測DNAPL及污染團之技術應用性

Publication Date: September 1, 2010 | ISBN-10: 1441914005 | ISBN-13: 978-1441914002 | Edition: 2010

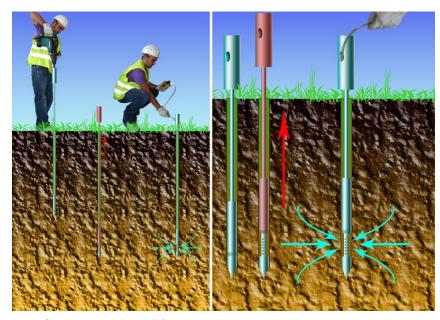
調查技術工具	DNAPL 污染源	地下水 污染團	說明
現有資料檢視 Desktop Review of Existing Information	Yes	Yes	初步建立CSM,後續調查規劃
土壤氣體調查 Soil Gas Survey	Maybe	Rarely	最些微的侵入式調查工具,描 繪未飽和含水層VOC分布
<u>地表地球物理方法</u> Surface Geophysical Methods	Yes	Yes	非侵入式方式調查地層、廢棄物掩埋處,DNAPL非一易偵測之地球物理標的,因此結果之陳述需謹慎

調查技術工具	DNAPL 污染源	地下水 污染團	說明
土壤岩心採樣 Soil/Rock Core Sample Examination	Yes	Yes	
<u>有機氣體分析</u> Organic Vapor Analysis	Yes	Yes	VOCs、NAPL篩選
<u>紫外線螢光檢視</u> UV Fluorescence Inspection	Maybe	No	判別可螢光顯色之NAPL (例如:PAHs)
<u>疏水性染劑測試</u> Hydrophobic Dye Shake Test	Yes	No	判定NAPL存在與否
NAPL襯管污染偵測技術 NAPL FLUTe TM Liners	Yes	No	研判岩心土壤樣本或搭配 岩心採樣或井中隨地層深 度是否存在NAPL純相
化學分析 Chemical Analysis of Soil and Rock	Yes	Yes	判別污染物濃度分布

調查技術工具	DNAPL 污染源	地下水 污染團	說明
直接貫入方式 Direct-Push Methods			可能受限於地層貫穿阻力
GeoProbe®	Yes	Yes	發展成熟的調查工具
圓錐貫入試驗 Cone Penetrometer Testing (CPT)	Yes	Yes	發展成熟的調查工具
薄膜介面探測 Membrane Interface Probe (MIP)	Yes	Yes	屬高解析調查工具,判別 純相及溶解相VOC
雷射誘導螢光 Laser-Induced Flurescence (LIF)	Maybe	No	判別可螢光顯色之NAPL (例如:含有PAHs)

調查技術工具	DNAPL 污染源	地下水 污染團	說明
地下水質垂直向剖析 Groundwater Quality Profiling (Vertical)	Yes	Yes	提供3-D地下水污染濃度 分布,協助剖析推估 DNAPL範圍
<u>Waterloo 水質分析器</u> Waterloo Profiler® and Similar Other D-P Tools	Yes	Yes	提供即時垂直向或3-D地 下水質分布
多階採樣監測 Multi-Level Monitoring	Yes	Yes	經由多階不同深度於單井 中分析監測水質
聚乙烯被動式採樣 Polyethylene Diffusion Bag Sampler	No	Yes	經由被動式擴散採樣,需 較長時間,較能真實反應 污染垂直之分布
DNAPL垂直向分佈剖析 DNAPL Profiling	Yes	No	
井中充脹式襯管污染偵測 技術 Downhole NAPL FLUTe TM	Yes	No	提供井中不同深度DNAPL 分布

調查技術工具	DNAPL 污染源	地下水 污染團	說明
<u>質量通量計算</u> Mass Flux Calculation Methods	No	Yes	估算污染源釋出之質量 通量
<u>井間介入性示蹤劑試驗</u> Partitioning Interwell Tracer Test (PITT)	Yes	No	估算DNAPL飽和度及體積
現地分析 Onsite Laboratory	Yes	Yes	不須送樣進實驗室,可即 時得到對應濃度數據

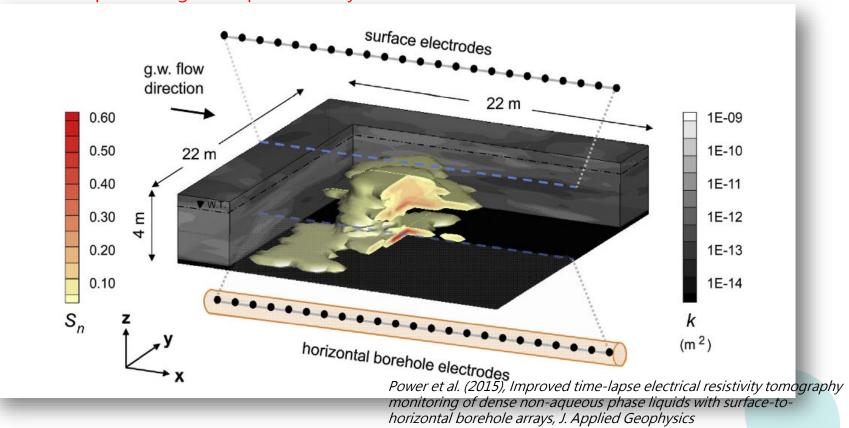


調查技術工具說明 --未來發展



土壤氣體調查 Soil Gas Surveyv

Active

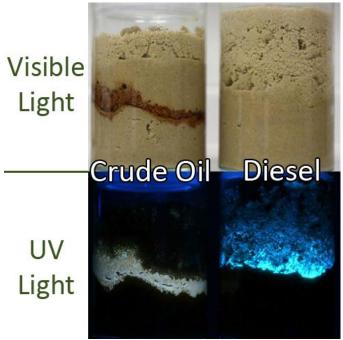

https://www.unido.org/

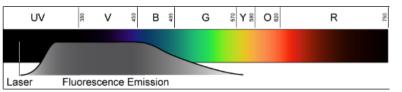
地表地球物理方法 Surface Geophysical Methods

- Release of <u>5 m³ of tetrachloroethylene (PCE) DNAPL</u>
- <u>DNAPL saturations</u> are shown above <u>1%, with deeper red</u> corresponding to higher DNAPL saturations.
- The permeability field is shown in grayscale with darker shades of gray representing lower permeability.

土壤岩心採樣 Soil/Rock Core Sample Examination

有機氣體分析 Organic Vapor Analysis


ASTEM Environmental, Inc.



紫外線螢光檢視 UV Fluorescence Inspection

Dakota Technologies, Inc.

Generally ultra-violet (UV) light is used to excite PAHs, which in turn produce violet to green fluorescence.

Laser-induced fluorescence (LIF) does not detect chlorinated solvent DNAPL because they aren't fluorescent molecules – exception is chlorinated DNAPL that contains enough fluorophores (degreasing, industrial waste, etc.).

疏水性染劑測試 Hydrophobic Dye Shake Test

OilScreenSoil (Sudan IV)®

http://www.cheiron-resources.com/index.php

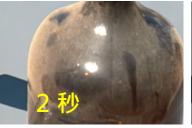
OIL-IN-SOIL™

http://www.oil-in-soil.com/index.htm

Sudan IV染劑 +介面活性劑 Sudan IV※劑 +柴油

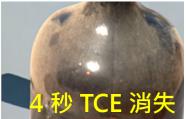
中興大學環工系 梁振儒教授實驗室測試

Sudan IV染劑+ 柴油污染土壤


NAPL襯管污染偵測技術 NAPL FLUTe™ Liners

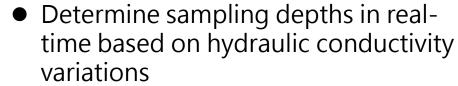
http://flut.com/NAPLFLUTe/napl_method.html

TCE高揮發性 使得TCE於土壤樣本中<u>不易被偵測到</u>



水

E入TCE

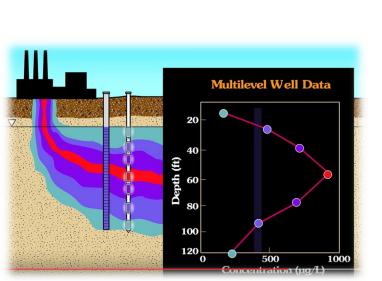

CE Stains

Waterloo水質分析器 Waterloo Profiler®

http://cascade-env.com/

 Determine the distribution of both hydraulic conductivity and contaminant concentrations in 3D with only one push per location

 Assess mass flux distributions and mass discharge using a single tool


多階採樣監測 Multi-Level Monitoring https://www.solinst.com/

Multilevel Systems

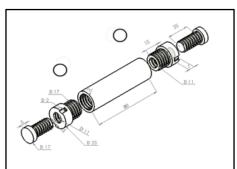
Solinst Bladder Pump Discrete Interval Sampler

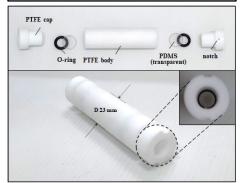
聚乙烯被動式採樣 Polyethylene Diffusion Bag Sampler

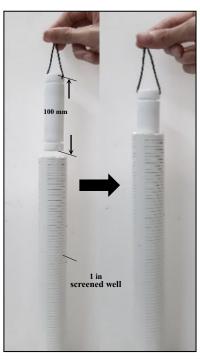
http://www.eonpro.com/

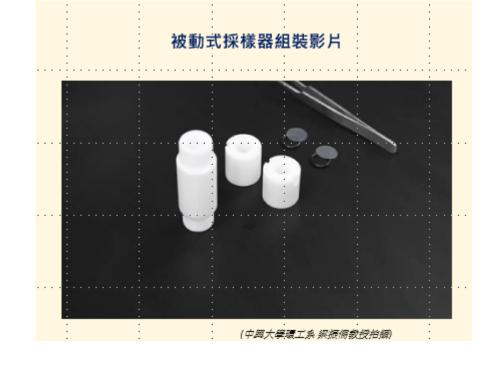
 EON Small Diameter Passive Diffusion Sampler- Pre-filled

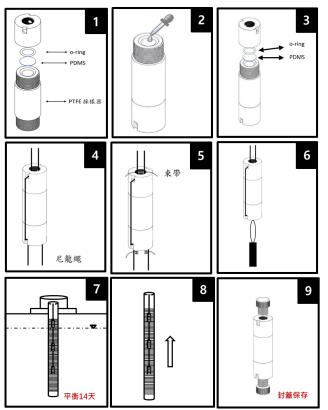
 EON Equilibrator Passive Diffusion Samplers



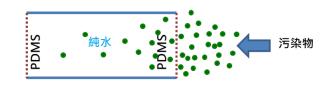

HydraSleeve "No Purge" Sampler



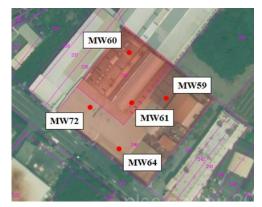




Liang, C.*, Chang, J.-S., Chen, T.-W., Hou, Y. 2021. Passive membrane sampler for assessing VOCs contamination in unsaturated and saturated media. Journal of Hazardous Materials 401: 123387

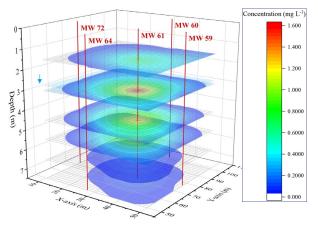


被動式採樣器操作流程



費克定律 (Fick's Law)

簡單擴散 (Simple Diffusion)

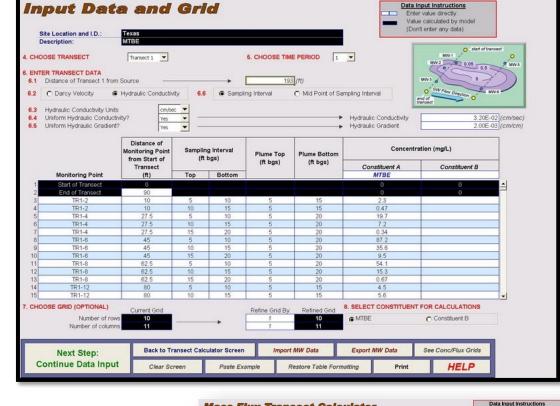


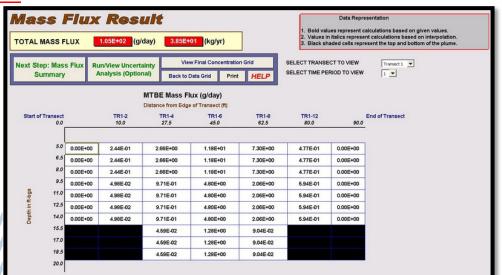
污染場址及監測井分布俯視圖

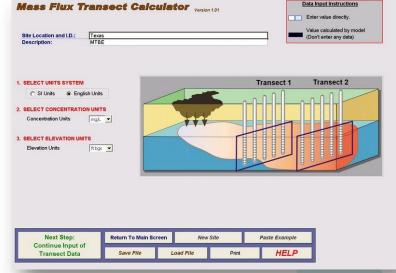
現地應用測試

CSM 三氯乙烯濃度分布

(中興大學環工系 梁振儒教授繪製,上課教材)

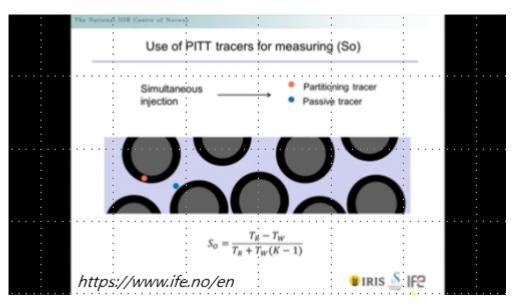


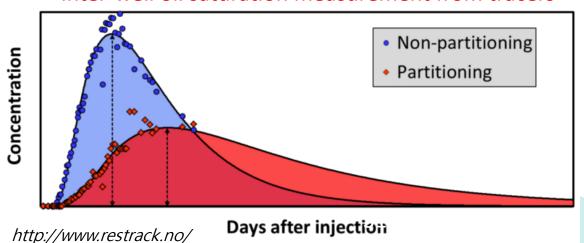

質量通量計算


Mass Flux Calculation Methods

http://www.gsi-net.com/en/

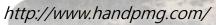
The Mass Flux Toolkit, developed for the Department of Defense ESTCP program, is an easy-to-use, Microsoft® Excel based software tool that enables users to learn about different mass flux approaches, calculate mass flux from transect data, and apply mass flux values to manage groundwater plumes.

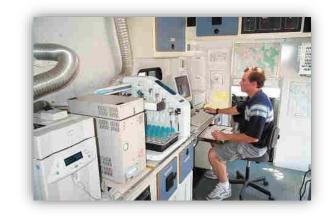



井間介入性示蹤劑試驗

Partitioning Interwell Tracer Test (PITT)

In PITTs, remaining oil saturation is given from the difference in retention times for the partitioning and water tracers, in addition to the oil/water partition coefficient.


Inter-well oil saturation measurement from tracers



現地分析 Onsite Laboratory

含氯污染場址介紹

- RCA土壤、地下水污染場址
- 中港溪地下水污染場址

緣起

❖ 59年設立

- 主要製程:
 - 電視、電子零件及電腦晶體產品製造工廠,主要營運為電視機組與電腦晶體製造組裝,部分廠區則為基板之裁切、清洗與焊接電子零件於基板上
 - 早期主要去脂溶劑為氟利昂 (Freon) 及四氯乙烯 (PCE),後期被1,1,1-三氯乙烷 (1,1,1-TCA) 取代

❖ 81年關廠

• 廠區賣給宏億建設開發股份有限公司(長億集團)

❖ 83年被舉發土壤及地下水污染

• 因未妥善處理有機溶劑等,導致土壤及地下水遭受污染

地理位置

❖ 場址位置:

- 位於桃園市中華路及富裕街交接處
- 占地面積約7.2公頃
- 南側為住商混合區,北側為密集住宅區

◆ 土地利用情形

- 場內主要廠房及附屬建物皆已拆除
- 地下水污染管制區內已禁止民眾使用地下水

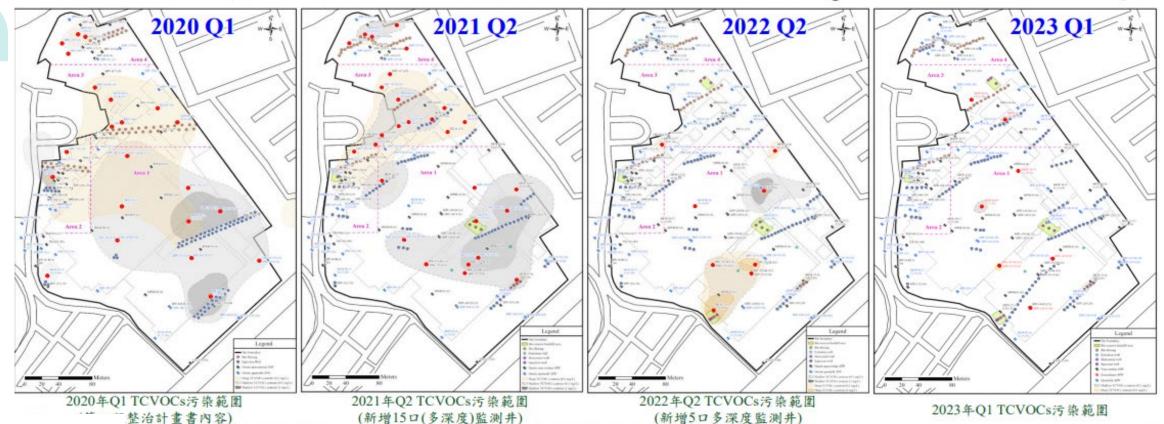
重要歷程

紀事內容
RCA公司於桃園市設廠,81年10月關閉
RCA公司原桃園廠被舉發污染土壤及地下水污染
臨近民井、場內監測井及水井水質調查、供應居民瓶裝水、接裝自來
水、土壤氣體、地下水及地面水調查等
土壤污染完成改善(尚無土污法)
前桃園縣政府(現桃園市政府)公告「台灣美國無線電公司 (RCA)
原桃園廠」為地下水污染 <mark>控制場址</mark>
本署依據前桃園縣政府(現桃園市政府)初步評估結果,公告為地下
水污染 整治場址
前桃園縣政府(現桃園市政府)公告「台灣美國無線電公司 (RCA)
原桃園廠」污染範圍為地下水污染管制區
前桃園縣政府(現桃園市政府)修正「台灣美國無線電公司 (RCA)
原桃園廠」污染範圍為地下水污染管制區

整治計畫期程

時間	紀事內容
94年6月至12月	RCA公司執行先導試驗(現地化學氧化及還原脫氯)
94年6月	RCA公司提出整治計畫
98年10月26日	整治計畫歷經前桃園縣政府(現桃園市政府)9次審修,本署同意 備查,整治計畫期程:1年6個月 原核定期限至100年5月6日
100年8月16日	前桃園7縣政府(現桃園市政府)同意整治計畫 第一次變更展延至101年2月15日
102年6月24日	前桃園縣政府(現桃園市政府)同意整治計畫 第二次變更展延至104年6月23日 嚴格要求RCA公司執行場外整治
104年4月27日	桃園市政府同意整治計畫 第三次變更展延至108年4月16日 持續要求RCA公司場內外一併進行整治
109年7月21日	桃園市政府同意整治計畫 第四次變更展延至 114年7月20日 (顧問公司不同、工法相異)

,,,,,,,,,,,,,,

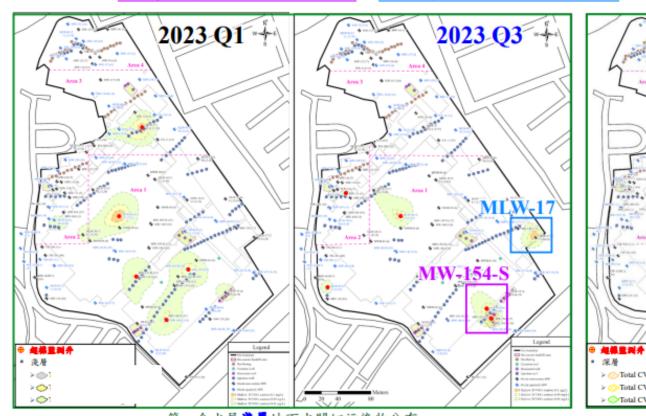

場內整體地下水關切污染物分布(1/2)

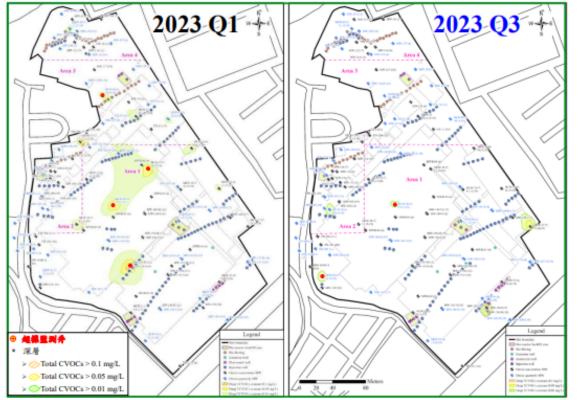
歷年關切污染物污染範圍分布變化

• 地下水TCVOCs污染範圍顯著減少及限縮,僅零星區域地下水TCVOCs濃度>0.1 mg/L

⊕ 超標監測井

- 灰色範圍:淺層
 - Total CVOCs > 0.1 mg/L
- Total CVOCs > 1 mg/L
- 橘色範圍:深層
 - ➤ Ontal CVOCs > 0.1 mg/L
 - > Total CVOCs > 1 mg/L




環境部 Ministry of Environment

場內整體地下水關切污染物分布(2/2)

2023年關切污染物污染範圍分布變化

2023年Q1起新增繪製TCVOCs濃度大於0.01及0.05 mg/L之範圍。至2023年Q3, TCVOCs濃度大於0.01 mg/L之範圍新增前鷹架堆置區MW-154-S及場址東南側MLW-17兩處,其餘區域範圍已限縮

第一含水層淺層地下水關切污染物分布

第一含水層深層地下水關切污染物分布

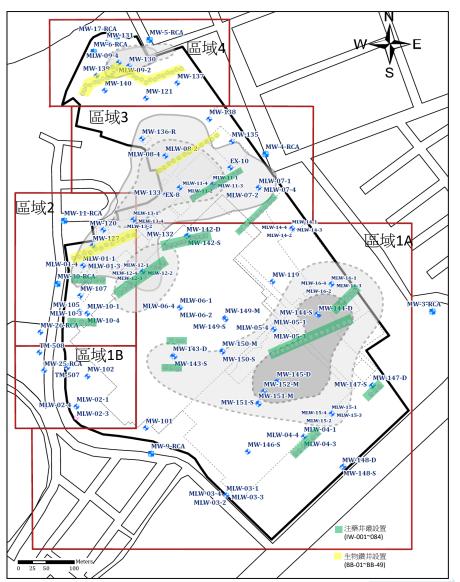
地下水整治技術

場內整治系統操作現況

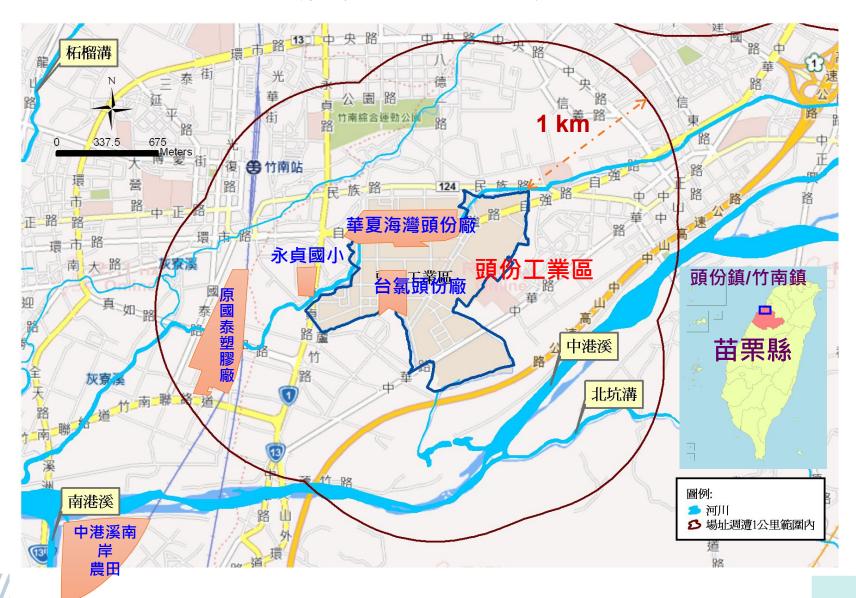
❖ 加強還原脫氯 (ERD) 整治

- 將場址劃分為4個主要受污染區域,依據相對濃度執 行此兩種方法:
 - 針對相對高濃度區域設立多深度井叢灌注乳化植物油和脫鹵球菌。
 - 針對相對低濃度區域安裝**生物鑽井**添加堆肥式木 質物。

❖ 監測系統


56口監測井,每季採樣(<mark>全場140口井</mark>)

多深度井叢圖



整治單位執行工作

中港溪地下水污染

場址簡介

- ▶ 自民國84年以來,環保機關陸續於台氯頭份廠、原國 泰塑膠竹南廠、華夏海灣塑膠等處及中港溪南、北岸 民井,發現地下水遭受含氯有機物嚴重污染,地下水 污染列管面積約40公頃。
- ▶ 環境部「高污染潛勢工業區污染源調查及管制計畫 (第一期)」調查發現頭份竹南地區地下水污染已擴 及低滲透性滯水層及第二含水層(污染達地表下80-90-公尺),VC達幾十mg/L。
- ▶ 本場址屬大尺度高度複雜污染場址,調查及整治面臨極大挑戰。

原國泰塑膠 竹南廠

頭份工業區

中港溪

中港溪南岸

區域民井地下水質異常

國泰塑膠廢棄物掩埋

台氯頭份廠整治餘毒難除

水文地質特徵

第一層 - 礫石夾中細砂

- 地表下約5-15公尺
- 第一含水層(非受壓含水層)

第二層 - 細砂岩、泥岩、砂質泥岩、 泥質砂岩等互層

- 地表下約15-35公尺
- 互層明顯, 滲透性較差, 滯水層

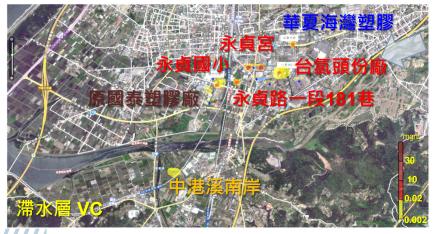
第三層 - 砂岩、泥質砂岩偶夾薄泥層

- 地表下約35-90公尺
- 第二含水層(滲漏含水層;有受壓情形)

第四層 - 泥岩、砂質泥岩偶夾薄泥層

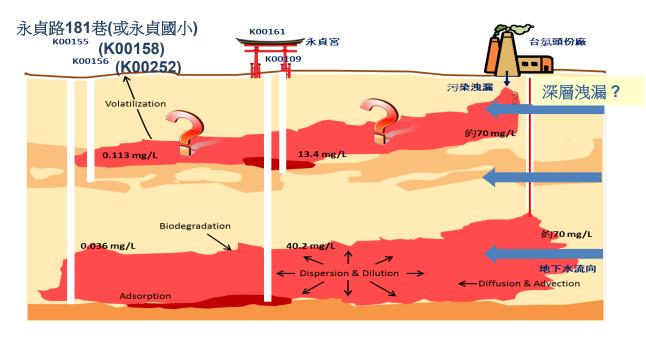
- 地質鑽探多至100公尺,實際厚度不明
- 滲透性較差, 歸類滯水層

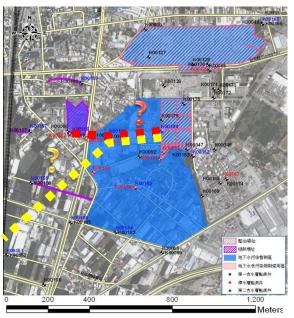

- ✓ A-A' 與B-B' 剖面顯示地質複雜度往西南有趨緩
- ✓ 原國泰塑膠竹南廠南側、中港溪與南港溪交會鄰 近區域滯水層及第二含水層分布不明
- ✓ 欠缺整合性水文地質模型


頭份竹南地區污染分布評析

❖模擬推估不確定性: 大尺度高度複雜場址、多口抽水井可能不定時抽水,易誤判污染範圍。

❖可能污染分布評析:依歷年曾超過管制標準監測井、歷年調查污染可能相關性,進行推估。





頭份工業區污染傳輸概念

- ❖以現階段**水文地質/地下水質/氡氣/含氯鑑識**結果,初步建立頭份工業區概念模型
- ▶ 台氯頭份廠→永貞宮→永貞國小(或永貞路181巷)沿線:各含水層污染均自台氯頭份廠
- ▶ 縱貫鐵路東西兩側VC分屬不同污染來源:頭份工業區台氯頭份廠、原國泰塑膠竹南廠
- ➤ 頭份工業區下游可能另有其他污染來源:同位素顯示K00156另有PCE、TCE來源

Well Injection

(中興大學環工系 梁振儒教授拍攝)

Thank You & Any Question?